Sõnnikut ümbertöötlevad sitikad kaitsevad kariloomi parasiitide eest ning mulda toitainetest vaesumisest

23.12.2020

Sõnniku ümbertöötlejad

MILLEKS ON KASULIKUD

Eraldi tasub välja tuua ka loomade sõnnikut ümber töötlevad mardikad nagu näiteks roojasitikad (Aphodius sp), nukitssitikad (Onthophagus sp) ja sitikad (Geotrupes sp), seal hulgas sitasitikas (Geotrupes stercorarius), kes on eriti olulised abimehed loomakasvatajatele, kuid vähenemas ka Eesti maastikes [25]. Neil mardikatel (eriti maa sisse tunneleid rajavatel sitikatel) on oluline roll sõnniku eemaldamisel, toitainete tsüklis (eriti lämmastikuringes) ja mulla kvaliteedi parandamisel [50–53]. Nad õhutavad mulda [54], mõjutavad taimekoosluste kujunemist ja produktiivsust [53], samuti mulla mikroobikoosluse kujunemist ja selle funktsioneerimist [54,55], vähendavad kahjulike kärbeste ja kariloomade soolestikuparasiitide hulka [52,56] ning kasvuhoonegaaside eraldumist karjamaalt [57]. 

Seejuures on toetab mitmekesine sõnnikut ümbertöötlevate mardikate kooslus neid hüvesid paremini kui vaesem kooslus [51,54,55,58,59] ning kaitseb samas ka neid endid näiteks kariloomadel kasutatavate antihelmintikute (nugiusside vastaste ravimite) kahjuliku mõju eest [51]. Samas on näidatud, et ka liigivaesemad, kuid arvukad, mardikakooslused saavad efektiivse ja kiire sõnniku eemaldamisega hakkama [59,60]. Sellegipoolest on igal liigil oma roll ja veidi erisugune suhe ümbritseva keskkonnaga ning liigilise koosseisu muutused võivad tuua kaasa muutusi ka nende pakutavates hüvedes [53]. Seetõttu on vaja toetada nii sõnnikut ümbertöötlevate mardikate liigirikkust kui ka arvukust [59].

Sitasitikas (Geotrupes_stercorarius). Foto: Jessica Towne, CC0

KUIDAS SOODUSTADA

Üks peamisi probleeme on sõnnikut ümbertöötlevate mardikate seisukohast ravimite kasutus kariloomade endo- ja ektoparasiitide vastu. Eelkõige on kahjulikud antihelmintikud, nagu erinevad makrotsüklilised laktoonid [51,60–62]. Ravimitele on eriti tundlikud tunneleid kaevavad liigid [61], mis on ka üldiselt rohkem ohustatud, kuid samas ökoloogiliste funktsioonide teostamisel olulisemad [63]. Tõenäoliselt on ravimite väiksem kasutus ka üks põhjus, miks mahefarmides on võimalik leida kordades rohkem sõnnikut ümbertöötlevate mardikate liike kui tavafarmides [64]. Lahenduseks oleks anda antihelmintikuid kariloomadele ainult siis, kui seda otseselt vaja on, ning eelkõige vältida nende manustamist ajal, kui loomad on karjamaal. Koos kasuga, mida sellisel juhul võib saada tänu sõnnikut ümbertöötlevate mardikate ning vähenenud kulutustega ravimitele, on see variant lisaks muudele hüvedele ka majanduslikult kasumlik [52].

Lisaks mõjutab sõnnikut ümbertöötlevaid mardikaid ka majandamine ja maastiku ajalugu ja struktuur. Neile sobib pigem karjatamine, samas kui niitmine ja väetamine vähendavad mitmekesisust [50]. Oluline on ka karjatamise järjepidevus ühel alal, mis tõstab eelkõige rohkem spetsialiseerunud liikide mitmekesisust [65]. Samuti näitavad uuringud, et rotatsiooniline karjatamine võib olla kasulikum kui pidev karjatamine ühel karjamaal [56]. Mitmekesisust kahandab aga ülekarjatamine, mis on eriti negatiivse mõjuga suurematele ja tunneleid rajavatele liikidele, kuid soodustab sõnnikus elavaid liike [66]. Sõnnikut ümbertöötlevate mardikate mitmekesisus on kõrgem suuremate karjamaadel (> 130 ha) või siis väiksematel, mis asuvad maastikus lähestikku, võimaldades isendite liikumist ühelt alalt teisele [65].

Kõigi meetmete kirjeldusteks vaadake tabelit.

Allikad

  1. Garibaldi LA, Carvalheiro LG, Leonhardt SD, et al. From research to action: Enhancing crop yield through wild pollinators. Front Ecol Environ 2014;12(8):439–47. https://doi.org/10.1890/130330.
  2. Martin EA, Dainese M, Clough Y, et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol Lett 2019;22:1083–94. https://doi.org/10.1111/ele.13265.
  3. Rodríguez C, Wiegand K. Evaluating the trade-off between machinery efficiency and loss of biodiversity-friendly habitats in arable landscapes: The role of field size. Agric Ecosyst Environ 2009;129(4):361–6. https://doi.org/10.1016/j.agee.2008.10.010.
  4. Gallé R, Happe AK, Baillod AB, Tscharntke T, Batáry P. Landscape configuration, organic management, and within-field position drive functional diversity of spiders and carabids. J Appl Ecol 2019;56(1):63–72. https://doi.org/10.1111/1365-2664.13257.
  5. Ouin A, Burel F. Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agric Ecosyst Environ 2002;93(1–3):45–53. https://doi.org/10.1016/S0167-8809(02)00004-X.
  6. Veromann E, Kaasik R. Põllumajandusmaa mitmekesisus. Tartu: Eesti Maaülikool; 2019.
  7. Luik A. Abiks väiketootjale. Elurikkuse suurendamine ja loodushoidlik taimekaitse. SA Eesti Maaülikooli Mahekeskus; 2018.
  8. Elts J. Põllulindude kaitseks vajalikud tegevused. Tartu: 2018.
  9. Svensson L, Mullarney K, Zetterström D. Linnumääraja. Tallinn: Varrak; 2015.
  10. Semm M, Mikk M, Elts J, Lohtaja S. Põllumajandusmaastike loodushoid. Soovitusi talunikele igapäevasteks töödeks. Eesti Loodusfoto; 2003.
  11. Moks E, Remm J, Kalda O, Valdmann H. Eesti imetajad. Tallinn: Varrak; 2015.
  12. Pywell RF, James KL, Herbert I, et al. Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol Conserv 2005;123(1):79–90. https://doi.org/10.1016/j.biocon.2004.10.010.
  13. Maudsley MJ. A review of the ecology and conservation of hedgerow invertebrates in Britain. J Environ Manage 2000;60(1):65–76. https://doi.org/10.1006/jema.2000.0362.
  14. Diacon-Bolli J, Dalang T, Holderegger R, Bürgi M. Heterogeneity fosters biodiversity: Linking history and ecology of dry calcareous grasslands. Basic Appl Ecol 2012;13(8):641–53.
  15. Mazalová M, Šipoš J, Rada S, Kašák J, Šarapatka B, Kuras T. Responses of grassland arthropods to various biodiversity-friendly management practices: Is there a compromise? Eur J Entomol 2015;112(4):734–46. https://doi.org/10.14411/eje.2015.076.
  16. Bonari G, Fajmon K, Malenovský I, et al. Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agric Ecosyst Environ 2017;246:243–52. https://doi.org/10.1016/j.agee.2017.06.010.
  17. MacDonald D. W., Johnson P. J. The relationship between bird distribution and the botanical and structural characteristics of hedges. J Appl Ecol 1995;32(3):492–505.
  18. Vickery JA, Bradbury RB, Henderson IG, Eaton MA, Grice P V. The role of agri-environment schemes and farm management practices in reversing the decline of farmland birds in England. Biol Conserv 2004;119(1):19–39. https://doi.org/10.1016/j.biocon.2003.06.004.
  19. Šálek M, Kreisinger J, Sedláček F, Albrecht T. Corridor vs. hayfield matrix use by mammalian predators in an agricultural landscape. Agric Ecosyst Environ 2009;134:8–13. https://doi.org/10.1016/j.agee.2009.06.018.
  20. Beier P, Noss RF. Do habitat corridors provide connectivity? Conserv Biol 1998;12(6):1241–52.
  21. Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF. Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 2011;144(6):1816–25. https://doi.org/10.1016/j.biocon.2011.03.014.
  22. Dennis RLH, Dapporto L, Dover JW, Shreeve TG. Corridors and barriers in biodiversity conservation: A novel resource-based habitat perspective for butterflies. Biodivers Conserv 2013;22(12):2709–34. https://doi.org/10.1007/s10531-013-0540-2.
  23. Pywell RF, Meek WR, Hulmes L, et al. Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. J Insect Conserv 2011;15(6):853–64. https://doi.org/10.1007/s10841-011-9383-x.
  24. Grass I, Albrecht J, Jauker F, et al. Much more than bees - Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agric Ecosyst Environ 2016;225:45–53. https://doi.org/10.1016/j.agee.2016.04.001.
  25. Peepson A, Talvi T. Põllumajandusmaastike elurikkus. Ökoloogiliste Tehnoloogiate Keskus; 2014.
  26. Cole LJ, Kleijn D, Dicks L V, et al. A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. J Appl Ecol 2020;57(4):681–94. https://doi.org/10.1111/1365-2664.13572.
  27. David A, Botías C, Abdul-Sada A, et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ Int 2016;88:169–78. https://doi.org/10.1016/j.envint.2015.12.011.
  28. Marja R, Nellis R. Perioodil 1984–2017 põllulindude arvukuse muutus Eestis ning selle seos põllumajanduse ja kiskjatega. Hirundo 2018;31(1):49–68.
  29. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice P V, Evans AD. Does organic farming benefit biodiversity? Biol Conserv 2005;122(1):113–30. https://doi.org/https://doi.org/10.1016/j.biocon.2004.07.018.
  30. Dicks LV, Ashpole JE, Dänhardt J, et al. Farmland Conservation Pages 291-330. Action: Leave headlands in fields unsprayed (conservation headlands). In: Sutherland WJ, Dicks LV, Ockendon N, Petrovan SO, Smith RK, eds. What Work. Conserv. 2019. Cambridge, UK: Open Book Publishers; 2019;
  31. Lebeau J, Wesselingh RA, Van Dyck H. Butterfly density and behaviour in uncut hay meadow strips: Behavioural ecological consequences of an agri-environmental scheme. PLoS One 2015;10(8):1–17. https://doi.org/10.1371/journal.pone.0134945.
  32. Valkó O, Török P, Matus G, Tóthmérész B. Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora Morphol Distrib Funct Ecol Plants 2012;207(4):303–9. https://doi.org/10.1016/j.flora.2012.02.003.
  33. BirdLife International Corncrake Conservation Team. Fifth meeting of the Corncrake Conservation Team 2015. Pilsen: 2015.
  34. Humbert JY, Ghazoul J, Richner N, Walter T. Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol Conserv 2012;152:96–101. https://doi.org/10.1016/j.biocon.2012.03.015.
  35. Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature 2014;515(7528):505–11. https://doi.org/10.1038/nature13855.
  36. Bender SF, Wagg C, van der Heijden MGA. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 2016;31(6):440–52. https://doi.org/10.1016/j.tree.2016.02.016.
  37. Giller KE, Beare MH, Lavelle P, Izac A-MN, Swift MJ. Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 1997;6(1):3–16. https://doi.org/https://doi.org/10.1016/S0929-1393(96)00149-7.
  38. Six J, Frey SD, Thiet RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 2006;70(2):555–69. https://doi.org/10.2136/sssaj2004.0347.
  39. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 2015;20(5):283–90. https://doi.org/https://doi.org/10.1016/j.tplants.2015.03.004.
  40. Bender SF, Plantenga F, Neftel A, et al. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J 2014;8(6):1336–45. https://doi.org/10.1038/ismej.2013.224.
  41. Grant C, Bittman S, Montreal M, Plenchette C, Morel C. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can J Plant Sci 2005;85(1):3–14. https://doi.org/10.4141/P03-182.
  42. Rillig MC, Aguilar-Trigueros CA, Camenzind T, et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 2019;222(3):1171–5. https://doi.org/10.1111/nph.15602.
  43. Azcón-Aguilar C, Barea JM. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 1997;6(6):457–64. https://doi.org/10.1007/s005720050147.
  44. Plaas E, Meyer-Wolfarth F, Banse M, et al. Towards valuation of biodiversity in agricultural soils: A case for earthworms. Ecol Econ 2019;159:291–300. https://doi.org/10.1016/j.ecolecon.2019.02.003.
  45. Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl Soil Ecol 2012;61:300–4.
  46. Kabir Z. Tillage or no-tillage: Impact on mycorrhizae. Can J Plant Sci 2005;85(1):23–9. https://doi.org/10.4141/P03-160.
  47. Deguchi S, Shimazaki Y, Uozumi S, Tawaraya K, Kawamoto H, Tanaka O. White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 2007;291(1):291–9. https://doi.org/10.1007/s11104-007-9194-8.
  48. Zhu Y, Chen H, Fan J, et al. Genetic diversity and disease control in rice. Nature 2000;406(6797):718–22. https://doi.org/10.1038/35021046.
  49. Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 2010;186(4):968–79. https://doi.org/10.1111/j.1469-8137.2010.03230.x.
  50. Frank K, Hülsmann M, Assmann T, Schmitt T, Blüthgen N. Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agric Ecosyst Environ 2017;243:114–22.
  51. Beynon SA, Mann DJ, Slade EM, Lewis OT. Species-rich dung beetle communities buffer ecosystem services in perturbed agro-ecosystems. J Appl Ecol 2012;49(6):1365–72. https://doi.org/10.1111/j.1365-2664.2012.02210.x.
  52. Beynon SA, Wainwright WA, Christie M. The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecol Entomol 2015;40:124–35. https://doi.org/10.1111/een.12240.
  53. Nervo B, Caprio E, Celi L, et al. Ecological functions provided by dung beetles are interlinked across space and time: Evidence from 15N isotope tracing. Ecology 2017;98(2):433–46. https://doi.org/10.1002/ecy.1653.
  54. Manning P, Slade EM, Beynon SA, Lewis OT. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric Ecosyst Environ 2016;218:87–94. https://doi.org/https://doi.org/10.1016/j.agee.2015.11.007.
  55. Slade EM, Roslin T, Santalahti M, Bell T. Disentangling the ‘brown world’ faecal–detritus interaction web: dung beetle effects on soil microbial properties. Oikos 2016;125(5):629–35. https://doi.org/10.1111/oik.02640.
  56. Wagner PM. Influence of cattle grazing practices on dung beetle (Coleoptera: Scarabaeoidea) communities in the Sandhill rangelands of Central Nebraska. University of Nebraska-Lincoln, 2016.
  57. Slade EM, Riutta T, Roslin T, Tuomisto HL. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci Rep 2016;6:1–9. https://doi.org/10.1038/srep18140.
  58. Milotić T, Baltzinger C, Eichberg C, et al. Functionally complete communities result in better ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J Biogeogr 2019;46(1):70–82. https://doi.org/10.1111/jbi.13452.
  59. Manning P, Cutler GC. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric Ecosyst Environ 2018;264:9–14. https://doi.org/https://doi.org/10.1016/j.agee.2018.05.002.
  60. Manning P, Lewis OT, Beynon SA. Effects of the veterinary anthelmintic moxidectin on dung beetle survival and dung removal. Entomol Exp Appl 2018;166(10):810–7. https://doi.org/10.1111/eea.12730.
  61. Sands B, Wall R. Sustained parasiticide use in cattle farming affects dung beetle functional assemblages. Agric Ecosyst Environ 2018;265:226–35. https://doi.org/https://doi.org/10.1016/j.agee.2018.06.012.
  62. Weaving HJ. The effect of veterinary endectocides on the reproductive physiology and output of temperate dung beetle species. University of Bristol, 2018.
  63. Piccini I, Nervo B, Forshage M, et al. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven? Sci Total Environ 2018;616617:1440–8. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.10.171.
  64. Whipple SD. Dung beetle ecology: habitat and food preference, hypoxia tolerance, and genetic variation. University of Nebraska-Lincoln, 2011.
  65. Buse J, Šlachta M, Sladecek FXJ, Pung M, Wagner T, Entling MH. Relative importance of pasture size and grazing continuity for the long-term conservation of European dung beetles. Biol Conserv 2015;187:112–9. https://doi.org/10.1016/j.biocon.2015.04.011.
  66. Perrin W, Moretti M, Vergnes A, Borcard D, Jay-Robert P. Response of dung beetle assemblages to grazing intensity in two distinct bioclimatic contexts. Agric Ecosyst Environ 2020;289:106740. https://doi.org/https://doi.org/10.1016/j.agee.2019.106740.
Tartu ÜlikoolLIFE IPNatura 2000LIFE EURegionaalarengu Fond